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Summary For the first time it is shown that the Prandtl length scale has a natural interpretation 
in terms of the physical structure of the boundary layer for a 2-D wall bounded flow. The 
Prandtl length scale is closely related to a new length scale parameter ßx that was developed to 

describe 2-D wall bounded flows using the method of integral moments. Both the Prandtl length 
scale and the new parameter jiil are first moments associated with the mean location value of the 

second derivative of the velocity profile. These two parameters therefore track the mean location 
of the viscous forces present in the boundary layer. A simple mathematical proof is offered to 
show that if similarity exists in a set of velocity profiles, then ju{ must be a similarity scaling 

parameter. The associated velocity scaling variable is the free stream velocity. In contrast, we 
show that for laminar flow over a wedge, the more familiar Prandtl scalings are not similarity 
scaling parameters. And yet for the viscous region of turbulent flows, it appears that the Prandtl 
scaling is better at tracking the viscous forces than ju{.  As one goes deeper into the boundary 

layer, into the Logarithmic Law region, experimental results continue to favor the Prandtl 
scalings over ßx in terms of similarity.  The explanation for this comes from the fact that ju{ is 

defined in terms of inner and outer parameters whereas the Prandtl scaling are defined using 
inner scaling only.   From the parameter definitions, one can show that ju{ is identical to the 

Prandtl parameter scaling for the case where the ratio of the free stream velocity at the boundary 
layer edge to the Prandtl scaling velocity, the so called friction velocity, is a constant. This Rotta 
similarity condition is found to hold in certain turbulent boundary layer flow data sets. We show 
that to experimental accuracy, a subset of these datasets exhibit whole profile similarity using the 
ßl scaling parameter if one assumes that the reported skin friction coefficients are in error by 

+10%. The results lead to a new conceptual picture for similarity of the turbulent boundary 
layer. 



1. Introduction 
Beginning with the pioneering work of Reynolds [1], there has been a concerted effort to find 

coordinate scaling parameters that make the scaled velocity profiles and shear-stress profiles 
taken at different stations along the flow appear to be nearly identical. For turbulent boundary 
layers, this search for "similarity" was mostly unsuccessful. This led to the practice of dividing 
the turbulent profile into two regions, an inner region dominated by viscous forces and outer 
region dominated by turbulent inertial forces. It has been universally accepted that the 
Prandtl [2] scaling parameters are the correct scaling form for the turbulent boundary layers inner 
region [3]. The main reason for this would seem to be that the Prandtl scaling parameters in the 
form of the Logarithmic Law (Log Law for short) have been successful at producing similar 
velocity profiles in the Log Law region for a wide range of experimental datasets. The Log Law 
applies to the overlap region between the inner and outer regions and states that in this overlap 
region of the turbulent boundary layer, the velocity in the streamwise jc-direction u(x, y) is given 

by 
u{x,y)     \ .   (yuA    _ (1) 

In 
uT K 

+ B 
v 

where y is the height perpendicular to the solid surface , V is kinematic viscosity, K and B are 
constants, and  uT  is the Prandtl velocity scaling parameter, the so-called friction velocity. 

Although there is an ongoing controversy as to the universality of the Log Law, experimental 
results indicate that the Log Law is widely applicable to most turbulent boundary layer flows 
(see for example Monkewitz, Chauhan, and Nagib [4]). However, the Log Law region does not 
extend to the wall. Recently, there have been a number of papers [5-9] that indicate that 
experimental evidence supports the use of the Prandtl scaling all the way to wall. 

The experimental evidence for the Prandtl scaling is very strong for the inner region of the 
turbulent boundary layer. However, it must be acknowledged that the Prandtl length scale v I uT 

is not what one would consider a normal length parameter. There have been a few studies that 
have tried to introduce alternative length scales for the inner layer region. For example, 
Bushmann and Gad-el-Hak [10] have pointed out that the Zagarola and Smits [11] velocity 
scaling works as well as the Prandtl scaling for the inner region of certain turbulent channel 
flows, turbulent pipe flows, and the Zero Pressure Gradient (ZPG) turbulent boundary layer 
flows. Recently, Weyburne [12,13] introduced a way of describing the thickness and shape of 
the boundary layer velocity profiles using the standard moment method that is normally used to 
describe probability density functions (PDFs). These new parameters were developed from the 
observation that for laminar flow over a flat plate, the second derivative of the stream-wise 
velocity u(x,y) in the y-direction (normal to the plate) has a very Gaussian-like profile [12]. 
Borrowing from probability density function methodology, the boundary layer was then 
described in terms of the central moments of this Gaussian-like kernel. The most important 
result of this approach is that for the first time, we have a mathematically well-defined way to 
describe the viscous boundary layer thickness and shape. 

Although first applied to laminar flow, it is self-evident that these second derivative moments 
should track the thickness and shape of the inner viscous region for the wall-bounded turbulent 
boundary layer as well. One of these parameters is the mean location of the second derivative 
profile /nx given by 



ue _ du(x, y) (2) 

y=0 Mi dy 

where ue is the value of u(x, y) at the boundary layer edge.   Technically, this mean location 

should work for laminar and turbulent boundary layers. However, in what follows, we use the 
moment method to show that for the turbulent boundary layer, the mean location of the second 
derivative profile is better tracked by the Prandtl length scale v I uT rather than ju{. This means 

that for the first time it is possible to show that the Prandtl length scale v I' uT has an 

interpretation that can be traced back to the physical structure of the boundary layer. 
A major advantage of the scaling parameter ju{ is that it can be been shown mathematically 

that for flows showing similarity over the whole velocity profile, then ju{ must be a similarity 

length scaling parameter. This result is a follow-up to an earlier result in which Weyburne [14] 
presented a mathematical proof showing that for flows that show outer layer similarity, the 
displacement thickness Sl and ue must be similarity scaling parameters.   In what follows, we 

show that ju{ must also be a similarity scaling parameter and that under special circumstances 

the Prandtl scale v I uT is also a similarity scaling parameter. 

For laminar flow on a wedge we show that jiil is a similarity length scaling constant and that 

the Prandtl length scale is not. For turbulent boundary layer, the picture is more complicated. 
As already discussed above and as will be demonstrated below, experimental results definitely 
favors the Prandtl parameter scaling over the ju{ scaling in terms of similarity scaling of the 

inner region of the turbulent velocity profile. And yet the first principles mathematical proof 
offered herein indicates that for similarity over the whole profile, the scaling must be the new 
scaling given by ßx and ue.   This dichotomy is explained by the observation that turbulent 

boundary layers in general do not show whole profile similarity. Thus it would appear that for 
similarity, the new scaling is limited to laminar flow situations.  However, we show that /nx is 

equivalent to the Prandtl length scale v I uT for the case where the ratio ue I uT is a constant. This 

Rotta [15] similarity condition is found in certain turbulent boundary layer flow datasets. In 
what follows, we show that to experimental accuracy, a subset of these datasets exhibit whole 
profile similarity using the new scaling parameters if one assumes that the reported skin friction 
coefficients are in error by ±10%. 

The new results presented herein together with earlier results for outer layer similarity [16] 
allow us to develop a new conceptual model of similarity of the turbulent boundary layer that is 
very different then the present conceptual model. We begin by first briefly introducing the 
relevant mathematical equations for describing the inner layer region of the turbulent boundary 
layer. 

2. Second Derivative Moments 
In an earlier paper, Weyburne [12,13] employed the moment methodology normally used to 

describe probability density functions (PDFs) in order to describe the thickness and shape of a 
2-D boundary layer. In the next section below we briefly review this formulation. This 
formulation was based on using the outer layer normalizing velocity ue.  We follow this with a 



moment development that uses the Prandtl scaling velocity uT as the normalizing velocity.   In 

order to differentiate the two moment developments, we will use the term "edge" moments and 
"wall" moments. 

2.1 Boundary Layer Edge Moments 
In this Section, we briefly review the equations and parameters developed by 

Weyburne [12,13]. The original derivation was based on the observation that the second 
derivative of the laminar velocity profile had a Gaussian-like appearance as illustrated in Fig. 1. 
In this figure we show the Blasius [17] solution for laminar flow on a flat plate. For comparison 
purposes, we plot a sample Direct Numerical Simulation [19] calculation of a turbulent boundary 
layer on a flat plate in Fig. 2. Notice that in this case, the plotted profile has a skewed Gaussian- 
like appearance. 
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Figure 1: Blasius [17] solution for laminar 
flow using the tabulated data from 
Schlitching [18]. 

Figure 2: The DNS solution for the ZPG 
turbulent boundary layer from Khujadze 
and Oberlack [19]. 

The standard method for describing PDFs like the Gaussian curve is to use the method of 
central moments. It follows, therefore, that laminar boundary layer flow and the viscous 
sublayer of a turbulent boundary layer can be characterized by moments of the second derivative 
profile just as one uses moments to describe PDFs. The moment description of the viscous layer 
starts by introducing the viscous velocity boundary layer nth central moment An  given by 

(3) 
K   =   \dy{y-Mi) 

„ J2{-//1M(x,y)/Me| 

dy 



where h is located deep into the free stream, and where //tis the first moment about the origin. 

The moments about the origin are given by 

f        „rf2{-//,»(^)/»J W 
o dy 

The numerator of the derivatives in Eqs. 3 and 4 are written in this way to emphasize the PDF- 
like appearance of this second derivative term. The mean location of the second derivative of the 
velocity relative to the boundary layer edge is ju1 and is actually defined by the requirement that 

A0 = jU0 = 1 which is how Eq. 2 is derived. 

The second central moment is related to a parameter we call the viscous boundary layer width 
given by <xv = JA2 .   The physical description of the shape of the viscous boundary layer is 

extended by using the third and fourth moments to define the viscous boundary layer skewness 
yx =A3/<JI and the viscous boundary layer excess y2 = A4 I <7V

4 - 3.   Notice that the turbulent 

flow curve (Fig. 2) is noticeably skewed compared to the laminar flow profile (Fig. 1). This fact 
is emphasized by looking at the skewness parameter yl. For laminar flow (Fig. 1), the skewness 

value is yx = 0.3 whereas for the turbulent flow curve (Fig. 2), the value is yx = 7.8 (this value 

is for this profile but will change from one profile to the next). For comparison, the skewness of 
a Gaussian curve is yx = 0. 

It should be emphasized that the second derivative moments are only part of the moment 
based description of the boundary layer shape and thickness [13]. In addition to the second 
derivative moments, it is also straightforward to describe parameters based on the first derivative 
profile and the velocity profile itself. This allows one to track the viscous region as well as the 
outer region using the appropriate parameters. 

2.2 Boundary Layer Wall Moments 

Notice that Weyburne's original description used the boundary layer edge velocity ue to 

normalize the velocity. It is possible to use the friction velocity uT instead. Thus we can define 

a viscous velocity boundary layer nth wall moment £n  as 

(n    =   \dyiy-Q),)   —  
(5) 

where "- a" term in the derivative's numerator is there as a nomalizing parameter, and where 

(Ox term is the mean viscous location of the wall moments about the origin defined as 

*• - Ifyy -p  • (6) 
The value of the normalizing parameter ax can be found by noting that the zeroth moments are 

defined by co0 = £0 = 1 so that 



*     ^{-tt^C*, ?)/«*} „      du(x,y) 
1   =    I dy     -^    —L-~ — 

o dy 

Since the friction velocity is defined as 

ay dy 
(7) 

y=0 

du(x,y) 
v 

dy (8) 
/y=0 

where Tw is the wall shear stress, then it easy to show that 

a. 
v 

The mean location of the second derivative at the wall then reduces to 

CO, \dy }'• 

d2\_vu^y) 

{ UT 

(9) 

(10) 

o dy 
Integrating Eq. 10 by parts, it is easily shown that cox = jux if one takes y = h to be deep into the 

free stream. This is to be expected. The wall moments (Eqs. 5-6) and the edge moments 
(Eqs. 3-4) should be independent of the velocity normalizing constant and result in the same 
moment values. 

This result, while technically correct, has a problem. We know that the viscous region for the 
turbulent boundary layer is confined to the very near wall region yet our integral limit is taken at 
the outer boundary layer edge. Let us reconsider Eq. 10. After integrating by parts, this equation 
reduces to 

CO, 
v u(x,y) 

(11) 
y=h,0 

If one takes y=h, where h is deep into the free stream then this reduces to cox = ßx as already 

noted. However, from decades of experimental work we know that the viscous region, and 
hence the second derivative profile is only numerically significant in a region from y=0 to about 
y = 70vI'uT (for comparison, the boundary layer edge is located at about y = 1070Wur). For 

the DNS example used in Fig. 2, we note that the second derivative value falls to a value less 
than 1% of the peak height at y = 70vI'uT.   If we take h = 70vI'uT in Eq. 11, then for the 

turbulent boundary layer we have u(x,h) = l5uT. The exact numerical value will dependent on 

the pressure gradient and Reynolds number but is approximately correct. This means that for the 
turbulent boundary layer, the mean location of the second derivative profile is given by 

cox    =   15 
v 

(12) 



What is important here is that as far as scaling for the turbulent boundary layer is concerned, the 
mean location is directly proportional to the Prandtl length scale! Therefore, this result indicates 
that the Prandtl length scale is tracking the viscous forces of the turbulent boundary layer. This 
result explains the reason the Prandtl length scale has been so successful at scaling the inner 
region of the turbulent boundary layer. 

3. The Mathematics of Similarity 
Now that //jand VI uT have been properly defined, we turn to the task of looking at the 

theoretical aspects of velocity profile scaling. We start by reproducing some of the results from 
Weyburne [14] in regards to similarity scaling. We then extend the earlier work to the scaled 
second derivative profile in order to obtain new similarity results. 

3.1 Velocity Profile Similarity 
In the earlier paper by Weyburne[14], a first principles mathematical proof for the existence 

of certain length and velocity scales was obtained for the similarity scaling of 2-D wall-bounded 
flows. The proof is based on a simple concept; the area under similar scaled velocity profile 
curves must be equal. By taking certain integrals of the scaled velocity profiles and its first 
derivative, a number of similarity scaling requirements were obtained. The analysis is 
reproduced below. 

It is important to point out that in the analysis below, no assumptions are necessary as to the 
functional form of the velocity profile u(x,y). The only requirements are that the boundary 
conditions for the velocity profile are known. Consider a 2-D flow along a body such that the y- 
direction is normal to the body's surface. We start by defining a length scaling parameter S(x) 

and a velocity scaling parameter us(x).   The length and velocity scaling variables S(x) and 

us (x) can vary with the flow direction (x-direction) but not in the y-direction. Starting with the 

formal definition of similarity, that is two velocity profiles are similar if they differ only by a 
scaling constant in y and u (x, y) for all y-values, then it is self evident that for two profiles to be 

similar, the area under the properly scaled velocity profiles must be equal. The area under the 
scaled profiles, in mathematical terms, is given by 

his(x)    r -I 

c{x)    =       I   d\-^r-l [ue-u{x,y)}/us{x)    , (13) 

where c(x) is a nonzero numerical constant, and y=h is deep into the free stream. The integral 

is written using the velocity difference so that the integral value is not dependent on the 
numerical value of h as long as h is located deep in the free stream.   Using a variable switch 
(d{y IS\ => (1/S)dy ) and simple algebra, it is easily verified that Eq. 13 reduces to 

,  * "«*i (14) 
us(x)S(x) 

where the Sl is the displacement thickness given by 
h 

S1    =   jdy {l-u(x,y)/ue}     . (15) 



Eq. 14 is an exact equation that applies whether the profiles are similar or not. A necessary, but 
not sufficient, condition for similarity is that the c(x)  values for each profile of the set of 

profiles being tested are equal. If the profiles are similar, then for scaling purposes, one can take 
c(x) = l   in Eq.   14.     This equation then becomes the empirically derived velocity scale 

successfully used by Zagarola and Smits [11] to scale turbulent boundary flows over wedges, in 
channels, and in pipes. The importance of Eq. 14 in regards to similar profiles is that it means 
that the thickness scaling and the velocity scaling variables are not independent for 2-D wall 
bounded similarity flows. 

3.2. First Derivative Profile Scaling 
By considering the area under the velocity profiles we were able to establish the inter- 

dependence of the length and velocity scaling. We can make additional derivations using the 
same methodology from above. We now extend the mathematics of similarity to the first 
derivative profiles and find additional similarity requirements. If similarity is present in a set of 
scaled velocity profiles then it is self evident that the scaled first derivative profiles (derivative 
with respect to the scaled y-coordinate) must also be similar. It is also self evident that the area 
under the scaled first derivative profiles must be equal for similarity. Furthermore, the area 
under the scaled first derivative profiles times the scaled y-coordinate to the power one must also 
be equal for similarity to exist. 

In mathematical terms, equal area under the scaled first derivative profiles is expressed by 
ll/d{A)    r 1   d{ue-u(x,y)}/us(x) r v "   »„     »   A, r      »  IAI 

0 S(x) 
d 

where b{x) is a non-zero numerical constant.   Using the boundary conditions w(x,0) = 0 and 

u(x,h) = ue combined with a simple variable switch, then by inspection one sees that Eq. 16 

reduces to 

b(x)   =   —f—   . 
us(x) 

For similarity of the velocity profiles in this geometry, we must have b(x) equal to a non-zero 
constant. This means that for similar velocity profiles, the scaling velocity must be a constant 
proportional to the free stream velocity at the boundary layer edge  ue. 

Next, in mathematical terms, having equal area under the scaled first derivative profiles times 
the scaled y-coordinate (to the power one) is equivalent to 

S(x) 

where d(x) is a non-zero numerical constant. After a simple variable switch and integration by 
parts, it is easily verified that this equation reduces to 

d{x)   =   SjS(x)   . (19) 



Eq. 19 is important in that it states that if similarity exists, i.e. if d(x) is a non-zero constant for 
a range of jc-values, then the displacement thickness must be a length scale that results in 
similarity for both the velocity profiles and the first derivative profiles. Therefore, using simple 
mathematics, we have determined that the displacement thickness Sl must be similarity length 

scaling variable if similarity is found to exist in a set of velocity profiles. From Eq. 17, we also 
know that ue must be a similarity velocity scaling variable for 2-D wall bounded flows. 

3.3 The Second Derivative Profile 
The above scaling results were obtained in the earlier paper [14]. Using the same 

methodology from above, we can extend the mathematics of similarity to the second derivative 
profile and find additional similarity requirements for the velocity profile. If similarity is present 
in a set of scaled velocity profiles then it is self evident that the scaled second derivative profiles 
(derivative with respect to y) must also be similar. It is also self evident that the area under the 
scaled second derivative profiles must be equal for similarity. 

In mathematical terms, this is expressed by the following. We start by using the scaling 
constants from above that were discovered to work for 2-D wall bounded flows.  Thus, Sl will 

be used to scale the y-variable and ue to scale the velocity. The similarity requirement for equal 

area under the scaled second derivative profiles is therefore 

*'.*    \ y]   d2{u(x,y)/u ) 
a{x)    =     j  d\j-\ \    ;2 , (20) 

where a(x) is a non-zero numerical constant. Using the definition of the mean location of the 

second derivative profile ju{ given by Eq. 2, it is easily verified that Eq. 20 reduces to 

f  \     *' (21) 

Mi 

Eq. 21 indicates that if similarity exists in a set of velocity profiles (a(x)=constant), then ßx 

must be a similarity length scale variable. From Eq. 17, we also know that if similarity exists in 
a set of velocity profiles, then ue must be a similarity velocity scaling variable for 2-D wall 

bounded flows. 

3.4. Prandtl Similarity Scaling 
If similarity exists in a set of velocity profiles for 2-D boundary layer flows, then S1, jUr, and 

ue must be similarity scaling parameters. The question becomes what can be said about the 

Prandtl scaling parameters. Using Eqs. 2 and 8, it is evident that the ratio of the new scaling 
parameter ßx to the Prantdl scaling parameter VI ut will be a constant if 

«e t   t (22) —-    =    constant    . 



This is of course the Rotta [15] condition for similarity of the turbulent boundary layer. If the 
Rotta condition holds, then either the Prandtl scaling parameters or the ju{ and ue scaling must 

work equally well since they will be equivalent. 

4. Similarity Scaling 

So far we have shown that the ß{ scaling and the Prandtl VI uT scaling have a solid physical 

basis. From first principles, we have also established that the new inner layer scaling parameter 
//[ is a similarity constant if similarity exists in a set of velocity profiles and that the Prandtl 

scaling parameters will also work if the Rotta condition (Eq. 22) holds. Now we turn to the 
question of whether the new parameters work as an inner region scaling parameter in real fluids. 
We start by considering laminar flow. 

4.1 Laminar Flow Similarity 

For laminar flow, the viscous effects, and therefore the inner region, extend through the whole 
profile. It is universally accepted that for laminar wedge flow, the Falkner-Skan [20] equations 
are solutions to the flow governing equations. For this case, the similarity length scaling 
parameter is proportional to 

m - p^ y m +1 ue 

where m is a constant dependent on the wedge angle and the similarity velocity scaling 
parameter is ue is given by 

ue    =    kxm    . (24) 

The velocity at the boundary layer edge ue is the similarity velocity scale. If the Prandtl velocity 

scale uT is also a similarity velocity scale, then the velocity ratio 

e(x)    =   ± (25) 

must be equal to a non-zero constant. The friction velocity is defined by Eq. 8 and the derivative 
at the wall can be written as 

\du\ _      ue    \  dulue   } (26) 

W,=o    "    S(x)\dy/S(x)\^ 
By the definition of similar profiles the quantity in the braces on the right-hand-side of Eq. 26 
must be a constant that we will designate as /. Therefore, combining Eqs. 8, 25, and 26, we have 

ue ue (27) 
•(*) 

uT 

S(x) 

Substituting in Eqs. 23 and 24, it is obvious that e(x) is, in general, not a non-zero numerical 

constant (except for sink flow, m = -1) for laminar flows. Therefore the Prandtl velocity scale is 
not a similarity constant for 2-D laminar wedge flow.   Using a similar development, it is also 
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possible to show that the Prandtl length scale VI ur is not a similarity scaling variable for 2-D 

laminar flow over a wedge. 
Contrast this with the jux scaling parameter.  In the last Section, we showed that the scaling 

variable jux and ue must be a similarity scaling parameters for all 2-D wall bounded similarity 

flows. For verification purposes, it easy to show that for similarity of laminar wedge flow 
discussed in this Section, that the ratio given by 

g(x) -_ £W 
Mi 

is equal a non-zero numerical constant. Using Eqs. 2 and 26, and the fact that the quantity in the 
braces on the right-hand-side of Eq. 26 must be a constant, then it easy to show that in fact 
g(x)= /.    Therefore, the new length scale jux  and velocity scale ue are similarity scaling 

parameters for 2-D laminar flow over a wedge in agreement with the results of the last section. 

4.2 Inner Region Turbulent Flow Similarity 
For inner layer similarity scaling of the turbulent boundary layer, decades of experimental 

work have convinced most researchers that the Prandtl scaling is the correct scaling for the inner 
region. The reason now becomes clear given that the Prandtl length scale is actually the mean 
location of the second derivative of the velocity profile. The second derivative of the velocity is 
directly responsible for the viscous forces acting in the near wall region of the boundary layer 
and the viscous forces are one of the major forces controlling the fluid flow in the near wall 
region. The mean location of the second derivative of the velocity relative to the wall is 
therefore tracking the major flow controlling force in the near-wall region. For the turbulent 
boundary layer, Prandtl showed that the region just above the viscous sub-layer, the Log law 
region, is also controlled by the wall shear stress. 

While the moment description makes it clear why the Prandtl scaling works, the question 
becomes how does the new scaling ßx compare with the Prandtl scaling.  This parameter should 

also be tracking the viscous forces.   In Figs. 3-5 we compare the Prandtl scaling and the jux 

scaling for the inner region of three different experimental turbulent boundary layer datasets. In 
these plots the same number of data points are used in each comparative plot, e.g. Fig. 3a and 3b. 
The upper range of the jc-axis was chosen to roughly correspond to the upper range of the viscous 
region (~2jUx = ~60-110Wwr).   For Figs. 3 and 4, we observe that the Prandtl scaling does 

indeed result in better velocity profile similarity over the viscous region. 
How then does one explain the plots in Fig. 5? Why is this dataset showing reasonable 

similarity even for the fix -scaled profiles?   The answer is tied to the ue/uT ratio, the Rotta 

condition. If the Rotta condition holds (Eq. 22), then the new scaling and the Pradtl scaling 
become identical. The datasets illustrated in Figs. 3-5 were selected to show the effect of the 
Rotta condition. To quantify how close we are to satisfying the Rotta condition we calculated 
the maximum percentage difference from the average ue I uT  value for each set of velocity 

profiles. For the DeGraaff and Eaton dataset (Fig. 3) this difference is ±8%, for the Österlund 
dataset (Fig. 4) it is +4%, and for the Skäre and Krogstad dataset (Fig. 5) it is ±2%. It is obvious 
that the closer the data comes to satisfying the Rotta condition, the more the  ßx -scaled 
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Figure 3a: DeGraaff and Eaton [5] 
velocity profiles taken at 7?^=1430, 

2900, and 5200. 

U 

y 
Figure 3b: DeGraaff and Eaton [5] 
velocity profiles taken at 
i?eö=1430, 2900, and 5200. 

yiß, 

Figure   4a:   Five   Österlund   [21] 
velocity profiles for ue = 10.3 m/s. 

U 

y 

Figure   4b:   Five   Österlund   [21] 
velocity profiles for ue = 10.3 m/s. 
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Figure 5a:   Skäre and Krogstad [22] 
seven velocity profiles. 

Figure 5b:   Skäre and Krogstad [22] 
seven velocity profiles. 

plots display similarity-like behavior through the whole viscous region of the turbulent boundary 
layer.   This confirms our expectations that the Prandtl scaling and the new scaling ßx and ue 

should be equivalent if the Rotta condition is satisfied. 

4.3 Whole Profile Turbulent Flow Similarity 
The results displayed in Fig. 5 are intriguing.   Although we are interested in inner layer 

scaling herein, it is notable that according to Section 3 above, ju{ and ue could also be scaling 

variables that result in similarity over the whole profile, not just the inner region. If one 
examines Fig. 5a and 5b, the plots appear similar within experimental error. To test to see if the 
new scaling extends to the whole profile similarity we expand the view of Fig. 5a and 5b to show 
the whole profile in Fig. 6a and 6b. Obviously, these figures indicate that neither fix and ue nor 

the Prandtl scaling result in whole profile similarity. However, Weyburne [16] showed that to 
experimental accuracy, certain turbulent boundary layer flow datasets do display whole profile 
similarity, including the Skäre and Krogstad [22] dataset, if they are scaled using Sx and ue. 

This scaling is illustrated in Fig. 7. This figure exhibits excellent collapse of all seven profiles to 
a single curve. If whole profile similarity exists in a set of profiles, then S{ and fix should both 
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yiß, 

Figure   6a:    The   rescaled   velocity 
profiles from Skäre and Krogstad [22]. 

Figure    6b:    The    rescaled    velocity 
profiles from Skäre and Krogstad [22]. 

ulu 

yis, 
Figure 7: The seven velocity profiles 
from Skäre and Krogstad [22]. 

be similarity scaling variables according to 
Eq. 19. 

How   can   this   apparent   contradiction   be 
explained?   One possibility is that the Ct data, 

which is used to calculate ß{ and uT , is in error. 

Consider that Skäre and Krogstad used three 
indirect methods for obtaining cf (from which 

ß{ and uT are calculated). In Fig. 8, we 

reproduce Skäre and Krogstad Fig. 4a plot of 
their c * data. The open circles were obtained by 

Skäre and Krogstad using a fitting technique 
involving the Musker semi-analytical velocity 
profile and apparently are the values tabulated in 
Skäre and Krogstad's Table 1. The diamonds 
are from Preston tube measurements and the 
open circles were obtained by a sheer stress 
balance equation approach. Notice that there is 
up to a 10% variation between the fitted method 
and Preston tube method and up to a 30% 
variation between the fitted method and shear 
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Figure 8: A reproduction of Skäre 
and Krogstad's [22] Fig. 4a 
showing their reported cf data 

Figure 9: Seven velocity profiles 
from Skäre and Krogstad [22] 
using inferred ßl values. 

stress method. Furthermore, the tabulated 
values found in the paper are based on a 
velocity profile fitting method that utilizes the 
Musker approximate profile for the inner 
region. It is known, however, that the Musker 
profile is only applicable to the ZPG turbulent 
profiles, not the adverse pressure gradient 
(APG) profiles of Skäre and Krogstad. 
Therefore it is not unreasonable to expect that 
values reported by Skäre and Krogstad are 
possibly in error by a small percentage. 

We therefore set out to find an "inferred" 
Cf dataset. To obtain an inferred cf dataset, we 

note that according to Eq. 15, the ratio of Sl to 

//j should be a constant for similarity. Using 

the tabulated Ct data to calculate jul, the 

variation of the ratio SJ ß{ is from +11% to - 

11% from the average. We therefore calculated 
an inferred jiil data set that had the same 

average value as Skäre and Krogstad's fitted 
data,  but  with   ß{   having  the   same  linear 

variation as their c^data.   This data is used to 

calculate an inferred cf dataset that is depicted 

by stars in Fig. 8. The difference between the 
inferred cf  and the tabulated cf data is on the 

order of ±10%. If one uses this inferred ß{ data, 

then one obtains the plot shown in Fig. 9. 
Obviously   the   inferred   ß{    data   results   in 

similarity-like behavior. 
The inferred scaling results are at least 

plausible. To strengthen the case we looked at 
the other two turbulent datasets that also showed 
whole   profile   similarity   using    Sl    and    ue 

scaling [14]. The datasets include the last five 
profiles of Clauser's [23,24] first dataset and the 
last four profiles of Herring and Norbury [24,25] 
first dataset. For the Clauser dataset, the 
variation of the inferred cf  values differ from 

the reported values is +11% to -26%. For the 
Herring and Norbury dataset, the variation of the 
inferred   cf   values  differ  from  the  reported 
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values from ±10%.  Rather than essentially reproducing the plots from Weyburne [14] (with ßx 

instead of Sx), we merely note that the plots using the inferred ßx  do indeed produce the 

appearance of whole profile similarity. 
It is important to point out that in all three datasets, the inferred  Ct data shows linearly 

decreasing behavior as one moves further out on the wedge as shown for example in Fig. 8. 
However, if the Rotta condition holds, i.e.  ue/uT= constant, then the  c, data should be a 

constant. This problematic behavior will be discussed in the Discussion section below. 

5. Conceptualizing the Turbulent Boundary Layer 
What emerges from this work together with an earlier study on outer region similarity [16] by 

this author is a different conceptual picture from that which has been built up since Prandtl's [3] 
pioneering work. In order to understand the differences, we begin by first reviewing the current 
conceptual picture of the turbulent boundary layer. Buschmann and Gad-el-Hak [26] have 
presented an excellent review of the present state of scaling of the turbulent boundary layer. In 
what follows we give a very condensed version of the present state of our understanding of 
scaling for the turbulent boundary layer. 

5.1 Current Scaling Model 
In the early Prandtl model of the turbulent boundary layer, although the Log Law applied to 

the overlap region it was assumed that this single length and velocity scale characterizes the 
entire boundary layer. It was soon realized that the Prandtl length and velocity scale did not 
work over the whole profile. This led to the concept of an inner and outer layer. This has 
evolved to where it is now assumed the regions are essentially separate and that one could have 
one set of similarity scaling parameters in the inner region and possibly a separate set of scaling 
parameters applying to the outer region (see for example discussion in Coles and E. Hirst [24]). 
The Log Law, or the competing laws detailed in Buschmann and Gad-el-Hak [26] review, 
generally apply to the overlap region between the inner and outer region. In all of the competing 
theories, the Prandtl scaling parameters are used. Although never explicitly tested, experimental 
evidence seems to indicate that the Prandtl scaling also applies to the inner near-wall region. 
Thus the current model has the inner layer length scaling as v I' uT and the inner layer velocity 

scaling as uT . Furthermore, this scaling applies to most if not all turbulent boundary flows. 

For the outer region, Brezek, et. al. [27] presents a good historical summary of scaling of 
the outer region. The modern search for similarity scaling behavior for the outer layer began 
with the experimental and theoretical work of Clauser [23]. Using the friction velocity uT as the 

velocity scaling variable for the outer region, Clauser predicted that equilibrium (similar) 
boundary layers are only obtained for the nonzero pressure gradient case when 

=    _A^ (29) 
puT ax 

is a constant. Based on Eq. 29 criteria, Clauser was able to generate similarity-like behavior for 
certain turbulent flows and found that, in general, the experimental equilibrium similarity 
condition is relatively rare and difficult to generate. 
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Rotta [15] and Townsend [28] subsequently developed some additional theoretical conditions 
for turbulent boundary layer similarity. Like Clauser, Rotta made specific assumptions about the 

velocity scaling (= uT) and the Reynolds stress scaling (= uT).    More recently, Castillo and 

George [29] used a momentum balance approach and found that the free stream velocity ue must 

be the velocity scaling parameter of flows with a pressure gradient. In addition, they found that 
similarity exists only when the parameter defined as 

. Sduldx ,_m A   = ^—     =   constant (30) 
ue do/dx 

where 8 is the thickness scaling parameter. Taking 8 equal to the ninety-nine percent thickness 
899, Castillo and George showed that rather than being rare, most nonzero pressure gradient 

turbulent boundary layer flows with constant upstream conditions were in equilibrium by this 
measure. In fact, they showed that only three values of this pressure parameter were needed to 
characterize all equilibrium turbulent boundary layers. One was for the APG flow with 
A = 0.22 , one for the favorable pressure gradient (FPG) flow with A = -1.92 , and one for the 
ZPG flow with A = 0. In one of the most recent publication by Castillo and co-workers, Cal and 
Castillo [30] backed off from this strong stance indicating other values for A are possible. 
Nevertheless, they indicate that even for the nonequilibrium flow cases (A ^constant), most 
flows show good collapse of the defect profile  (ue —u(x, y))/us   when the length scaling 

parameter is 899 or 895 and the velocity scaling parameter us is the Zagarola and Smit velocity 

scale   uzs = 8{ue (x)/S99   rather than   ue   as originally advocated by Castillo and George. 

Therefore, for the outer region, the current model for scaling is that the length scaling parameter 
is 899 or 895 and the velocity scaling parameter is uzs .  Furthermore, most turbulent boundary 

layers show good collapse of the defect profile (ue —u(x, y))/uzs when using this scaling 

combination. 

5.2 New Scaling Model 
In the new model, the inner layer designation will be replaced with the Prandtl layer 

designation. Although the extent and scaling are identical, we will use the Prandtl layer 
designation to emphasize the differences.  For the Prandtl layer, the length still scales as v I uT 

and the velocity scales as uT. Furthermore, this scaling applies to most if not all turbulent 

boundary flows. What is different is the realization that the Prandtl scaling works because the 
Prandtl mean location V / uT parameter tracks the viscous flow contributions for the turbulent 

flow case. It also becomes apparent why the Log Law has been so successful. If one examines 
Fig. 2, then one sees that the curve to the right of the peak is not falling exponentially to zero as 
is the case for a Gaussian-like curve (Fig. 1).   Instead, the second derivative curve is slowly 
decaying to zero in a ~l/y2 fashion. This leads to a logarithmic velocity profile in the region 
just above the peak in the viscous region. Thus the Log Law is simply the result of the fact that 
the viscous forces, which are being tracked by the Prandtl scaling parameters, is decaying to zero 
in a -1/ y2 fashion instead of exponentially (more about this in the Discussion below). This 
means that the viscous forces are controlling the Log Law region in the turbulent boundary layer. 
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These simple observations make it obvious as to why the Prandtl scaling have been so 
successful. 

In the very near wall region (0< y / ßy <0.2 which corresponds to 0< y <5), the current model 

assumes that the velocity profile is a linear function of the distance. This is incorrect as is 
evidenced by Figs. 1 and 2. The second derivative of a linear function is zero and as is obvious 
from Figs. 1 and 2, there is no place in this region where the second derivative is zero (except at 
y=0). The problem with continuing to assume linear behavior is that this would mean there 
would be no viscosity contribution to the flow in this region.   In fact the opposite is true; the 

viscosity contribution basically peaks at y I ßx -0.2 (y  ~5).   The behavior is better described as 

being linear-like with a quartic component in this region [9]. 
For the outer region, we note that the Castillo, George, and coworkers model is still being 

adjusted as new results are introduced. However, there have been some indications that this 
model for the turbulent boundary layer may not represent the correct picture. Indeed, Maciel, 
Rossignol, and Lemay [31] considered the Castillo and George formulation and, after looking at 
a range of experimental datasets, concluded that universal similar profiles for the ZPG, APG, and 
FPG boundary layers do not exist. While they concede the existence of similarity-like behavior 
in certain sets of experimental profiles, they contend that most turbulent boundary layers found 
in the real world are almost never in a state of equilibrium as contended by Castillo and George. 

More recently, Weyburne [16] showed that the supposed success of the Castillo and George 
model is being realized because of a flaw in the way the plots are being presented. The problem 
is that similarity behavior is being claimed by plotting datasets using the defect profile 
(ue — u(x,y))/uzs plotted versus y/S99. We have found that the defect profile tends to hide 

scaling differences in the outer region. Weyburne [16] showed that if one replots the data used 
by Castillo and George using the y-axis scale uluzs instead of (ue -u)luzs, then the profiles 

do not show good collapse as contended by Castillo and George. Because of the importance of 
this point, we offer additional support for this lack of similarity behavior. According to Cal and 
Castillo [30] even nonequilibrium flow cases (A ^ constant) should show good collapse of the 
defect profile [ue -u(x,y))/wzs. In Fig. 10a we reproduce part of Cal and Castillo [30] Fig. 2b. 

This figure shows data from Schubauer and Klebanoff [32] consisting of ten nonequilibrium 
profiles (taken at the 21 ft to the 25.77 ft stations). The profiles shown in Fig. 10a collapse 
reasonably well. Now consider the same exact data plotted in Fig. 10b using the y-axis scale 
u/uzs instead of (ue -u)luzs.  Recall the definition of similarity is that two velocity profiles 

are similar if they differ only by a scaling constant in y and u (x, y) for all y-values. Obviously, 

the ten profiles in Fig. 10b do not show similarity. This result, along with the earlier work [16], 
makes us believe that Castillo and George's [29] contention that most turbulent boundary layers 
are in equilibrium is in error. 

What emerges from the results herein and the earlier work is a very different picture of the 
outer turbulent boundary layer. In fact, we reject the traditional two-layer model. Instead, we 
believe that what we have is an inner layer similarity wall region in which the length and 
velocity scaling is controlled by the viscosity. Rather than an outer region with a distinct set of 
scaling, in the new model what we have is that for a small subset of turbulent boundary layers, 
whole profile similarity begins to turn on under the right conditions. Thus the previous work on 
outer layer similarity was actually discovering whole profile similarity-like behavior rather than 
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Fig. 10a: Ten profiles from Schubauer 
andKlebanoff [32]. 

Fig. 10b: Ten profiles from Schubauer 
andKlebanoff [32]. 

outer layer similarity that is somehow distinct from the inner layer similarity. Note that 
according to the old conceptual model, whole profile similarity is not even possible for turbulent 
boundary layer flows. This point will be discussed more fully in Section 6 below. Suffice it to 
say that the argument for whole profile similarity of the turbulent boundary layer is very 
compelling. 

The conditions for whole profile similarity follow from the momentum balance approaches 
presented by previous authors [23, 28, 29, 31, and 16]. They consist of: 1) the thickness scales 
as a linear function of the distance along the plate, 2) the velocity scales as the free stream 

velocity ue and is a power function of the type ue = ax (x - x0 )m , 3) the Reynolds stress scales as 

uv(x) = ul and uu(x) = u^ or uu(x) = ueuT [16]. However, the primary condition for whole 

profile similarity is the Rotta condition holds; that is the ratio ue/uT is (almost) constant. 

Traditionally, one views this ratio as the equivalence of the inner to outer velocity scales. In 
addition, under this condition, the length scales Sx, ß{, and v/uT become equivalent.   If the 

conditions 1-3 holds along with the Rotta condition, then the Clauser pressure condition (Eq. 28) 
becomes equivalent to Castillo and George's pressure condition (Eq. 27) and both are satisfied. 

Experimentally, the Rotta condition appears to be difficult to achieve. For datasets where the 
ratio difference is on the order of 10% or less, the velocity profiles start to show similarity-like 
behavior. This similarity-like behavior first manifests itself as what has been traditionally called 
the outer region similarity. Thus, all previous claims of outer region similarity are actually the 
beginning of whole profile similarity. However, it is not until the ratio difference becomes on 
the order of 2% or less that the profiles start to show whole similar to experimental accuracy. 
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6. Discussion 
In this paper we reviewed a second derivative moment method that can track the viscous 

region of any 2-D wall bounded flow, including laminar, transitional, and turbulent boundary 
layer flows. The big advantage of the moment method is that the handful of moment-based 
parameters can be traced back to the physical structure of the boundary layer. In particular, the 
ß1 parameter is the mean location of the second derivative profile for laminar flow and the 

Prandtl length scale VI uT is the mean location of the second derivative profile for turbulent 

flow.   It should also be noted that the displacement thickness S1 is mean location of the first 

derivative of the velocity profile, which means it tracks the outer region of the velocity 
profile [13].    This explains why Weyburne [14] found that S1 was effective as a similarity 

parameter for the outer region of certain turbulent boundary layers. Note however, that 
according to the new conceptual model, it was not outer region similarity that was being 
discovered using the Rotta condition as a screening tool in the Weyburne [14] paper, rather it 
was the beginning of whole profile similarity-like behavior.  The parameters ju{ and S1 are just 

two of the moment-based parameters that can be used to describe the boundary layer thickness 
and shape [12,13]. 

The moment method was instrumental in showing that the reason for the success of the 
Prandtl scaling is that the Prandtl length scale v I uT is actually the mean location of the second 

derivative profile for the turbulent boundary layer.   This means that VI uT tracks the viscous 

contributions for the turbulent flow case. The viscous contributions in turn control the flow 
behavior in the near wall region. We note that the development of the wall based moments in 
Section 2.2 required that we take the integral limit using wall-based friction velocity units rather 
than in the free stream velocity units. The justification for this is mostly experimental as is 
evidenced by Figs. 3-5. The wall-based Prandtl scaling units result in near wall similarity 
whereas the free stream scaling units ju{ do not. Furthermore, taking the integral limit out to the 

free stream located at about y = 1070v I uT compared to the near wall value at y = 70v I uT 

makes only an insignificant change (less than 1%) in the value of the mean location calculated 
using Eq. 10. What it does do is significantly change the x-dependence of the mean location 
value. We therefore feel justified in the wall moment development leading to the connection of 
the Prandtl length scale and the mean location of the second derivative profile. 

Not only does the second derivative wall moment development explain the success of the 
Prandtl scaling in the viscous region, but it also makes it apparent why the Log Law has been so 
successful. If one examines Fig. 2, then one sees that the curve to the right of the peak is not 
falling exponentially to zero as is the case for a Gaussian-like curve (Fig. 1). Instead, the second 

derivative curve is slowly decaying to zero in a ~\ly2 fashion. To emphasis this point, we 
replot Fig. 2 using log Plus units in Fig. 11. In this plot, the DNS data (+) shows Log Law 
behavior (the red line is the second derivative of Eq. 1) starting in the region just about at the 

peak in the viscous region. We should point out that this -1/ y2 decay is the result of the time 
averaging of the profiles. It may be that if one where able to look at the instantaneous velocity 
profiles, the instantaneous second derivative profile may still fall to zero exponentially but, as a 
result of the spatial averaging due to the time averaging process, the time averaged curve appear 

to be decaying in a ~l/y2 fashion.  Even though the viscous forces are fairly small in the Log 
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Law region compared to the peak value, it 
is apparent that they are still controlling 
the flow behavior in this region. This 
observation is supported by the work of 
Sreenivasan and Sahay [33] who pointed 
out that the Reynolds shear stress 
contribution to the momentum balance in 
the Log Law region must go to zero. This 
indicates that the viscous effects must play 
an important role in the region 
traditionally thought to be inviscid. 
Hence, not only does the Log Law region 
extend much further toward the wall than 
traditionally thought, but the viscous 
forces have important contributions 
throughout the entire Log Law region. 
Since the Prandtl length scale is the mean 
location of the viscous forces, then it 
becomes clear as to why the Prandtl 
scaling have been so successful. 

The  equal  area integral  approach to 
investigating similarity and the traditional 
momentum balance approach are actually 
complimentary approaches.    The integral 
approach is effective at identifying which 
scaling parameters are actually similarity 

parameters.  For example, for the 2-D boundary layer flow case, we proved theoretically that if 
whole profile similarity exists in a set of velocity profiles taken at various points along the flow 
direction, then the ju{ and Sl must be a similarity length scaling parameters.   The associated 

velocity scaling parameter is  ue.    For the case where the Rotta condition holds (Eq. 22) 

identically, we showed that in fact Sx, A, ß1, and VIuT all must be similarity length scaling 

parameters and ue,  uT, and uzs  (the Zagarola and Smit velocity scale) must be similarity 

velocity scaling parameters (A is the Clauser-Rotta lengthscale,  dlueluT).   The momentum 

balance approach on the other hand is effective at identifying the properties that scaling 
parameters must have for similarity to exist. We note that there is one exception to this general 
division of the two similarity approaches. Castillo and George [29] used the momentum balance 
approach to show that for turbulent flows with a pressure gradient, the velocity scaling parameter 
for similar flows must be ue in agreement with the integral approach. 

Conventional thinking is that this whole profile similarity scenario is not possible for 
turbulent boundary layers. The conventional wisdom case is based on the argument that the x- 
dependent variable groupings appearing in the flow momentum equations must have the same 
functional dependence as the flow develops along the plate (wedge). Townsend [28] used this 
approach to show that if one includes the viscous force term parameter for turbulent flows, then 
these parameter ratios require that the thickness scaling must be linear in x and that the velocity 

Figure 11: The DNS solution for the 
ZPG turbulent boundary layer from 
Khujadze and Oberlack [19]. 
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scaling must go as 1/ x {i.e., wedge sink flow). These results are indisputable. However, as 
Weyburne [14] pointed out, the momentum equation argument does not account for the 
magnitude of the viscosity term as one proceeds down the wedge, or in this case the variation of 
the magnitude of the term as one proceeds down the wedge. Since the flow governing equations 
are partial differential equations, it is always necessary to neglect certain terms because there 
magnitude is small relative to the other terms in order to obtain similarity solutions. It is our 
contention that for certain turbulent boundary layer flows, that while the magnitude of the 
viscous term in the momentum equation is not negligible as one proceeds down the length of the 
wedge, the variation of the magnitude of the term is smaller than what can be measured 
experimentally. Weyburne [14] presented semi-empirical based arguments that indicate that the 
viscous term variation as one proceeds down the length of a wedge for certain turbulent flows is 
indeed small. Therefore, even if the Townsend based requirements are violated, it is still 
possible to have whole profile similarity within experimental error for certain 2-D wall bounded 
turbulent boundary layer flows. Weyburne [14] presented the experimental data of Clauser [23], 
Herring and Norbury [25], and Skäre and Krogstad [22] as showing whole profile similarity. 
Results presented herein using the same datasets with the inferred c, data are not definitive but 

they are plausible and therefore tend to support the proposition that whole profile similarity is 
possible for the turbulent boundary layer. 

The strongest support for the violation of the Towsend viscosity-based similarity argument for 
the turbulent boundary layer comes from the near universality of the Prandtl scaling applying to 
the inner region. Although we have presented a moment-based theoretical foundation for this 
universality of the Prandtl scaling, it has never been experimentally tested specifically for 
applicability in the inner region to our knowledge. However, there are many papers that have 
considered the universality of the Log Law region (see for example Monkewitz, Chauhan, and 
Nagib [4]). Although the Log Law region does not extend to the wall, there have been a few 
experimental papers [5-6] as well as a few papers [7-9] that use analytical extensions to the Log 
Law that cover the region from the wall out to the outer limits of the Log Law region. These 
papers indicate that even in the inner viscosity dominated region, the Prandtl scaling produces 
similar-like velocity profiles all the way to wall. Consider, for example, Figs. 3b, 4b, and 5b that 
show good collapse of the sets of velocity profiles well into the viscous region. How is this 
possible in light of the Townsend based viscosity argument? According to Towsend's viscosity 
argument, inner layer similarity should not be possible for the turbulent boundary layer except 
for sink flow. The only answer that makes sense is that, as we have already contended above; 
the expected differences in the velocity profiles due to viscosity must be smaller than what can 
be measured experimentally. 

Additional support for the whole profile similarity scenario comes from an earlier paper by 
Weyburne [16] who investigated outer region similarity of the turbulent boundary layer. In this 
paper, it was pointed out that the only datasets showing outer region similarity were datasets that 
satisfied the Rotta condition. Using the Rotta condition as a screening tool, eleven datasets from 
various authors were found that satisfy the Rotta condition approximately, including the Skäre 
and Krogstad [22] dataset.  In that study, four possible length scales (S{, A, S2, and S99) and 

three possible velocity scales (ue, uT and uzs ) were compared [16]. By comparing plots, it was 

found that all of the length scales produced similar results.   However, in general, S1 and ue 

resulted in the best similarity-like scaling.   In retrospect, it may be that S1 and ue have the 
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smallest measurement error bars. On the other-hand, uT measurements are all indirect and have 

the most uncertainty. In any case, the fact that a purely experimental comparison found that S1 

and ue resulted in the best similarity-like scaling in outer region of the turbulent boundary layer 

cannot be a mere coincidence. Instead, it supports the contention that whole profile similarity is 
possible for the turbulent boundary layer and is consistent with the new conceptual picture of the 
turbulent boundary layer developed in Section 5. 

Strictly speaking, whole profile similarity is only possible for ue/uT = constant. 

Experimentally, it would seem that it is not possible to achieve this goal exactly. Rather one can 
come close, as with the Skäre and Krogstad [15] dataset.  Consider the cf data shown in Fig. 8. 

If   ue/uT = constant condition holds, then c,  must be a constant.   Yet the inferred dataset 

(stars), which produces similarity-like behavior of the velocity profiles, is not constant and is in 
fact a linearly decreasing function of the plate Reynolds number. We believe that this behavior 
is a reflection of the fact that the viscous forces are working against perfect velocity profile 
similarity. It just happens that the differences in the profiles are smaller than the experimental 
uncertainty as long as the ue I uT ratio spread is on the order of ±2 % or less (corresponding to a 

skin friction coefficient spread of about +10%). 

7. Conclusion 
Using the moment method that was previously used to develop length scaling parameters for 

describing the boundary layer region, it was discovered that the Prandtl length scale is actually 
the mean location of the second derivative of the velocity profile for the turbulent boundary 
layer. This discovery makes it clear as to why the Prandtl scaling has been so successful. In 
addition, it was shown that for whole profile similarity of 2-D wall bounded velocity profiles, the 
second derivative based thickness parameter ß1 must be a similarity length scaling variable and 

the velocity scaling variable must be the free stream velocity. It was shown that to experimental 
accuracy, this parameter may show whole profile similarity for certain turbulent boundary layer 
datasets satisfying the Rotta condition. Finally, a new conceptual picture of the turbulent 
boundary layer was presented. It is better able to explain the nature of the turbulent boundary 
layer than the current model. 
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